High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction
نویسندگان
چکیده
The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction.
منابع مشابه
Ribosylation triggering Alzheimer’s disease-like Tau hyperphosphorylation via activation of CaMKII
Type 2 diabetes mellitus (T2DM) is regarded as one of the serious risk factors for age-related cognitive impairment; however, a causal link between these two diseases has so far not been established. It was recently discovered that, apart from high D-glucose levels, T2DM patients also display abnormally high concentrations of uric D-ribose. Here, we show for the first time that the administrati...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملInsulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms.
Hyperphosphorylated tau is the major component of paired helical filaments in neurofibrillary tangles found in Alzheimer's disease (AD) brains, and tau hyperphosphorylation is thought to be a critical event in the pathogenesis of the disease. The large majority of AD cases is late onset and sporadic in origin, with aging as the most important risk factor. Insulin resistance, impaired glucose to...
متن کاملChronic Cold-Water-Induced Hypothermia Impairs Memory Retrieval and Nepeta menthoides as a Traditional “Hot” Herb Reverses the Impairment
Iranian Traditional Medicine (ITM) describes a kind of dementia with similar signs and symptoms of Alzheimer’s disease (AD). It explains the pathology of dementia with cold intemperament of the brain, which means that the brain is colder than its healthy form. ITM strategy for treatment of dementia is to heat the brain up by medical “hot” herbs. Nepeta menthoides (NM) is one of these “hot” herb...
متن کامل